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Abstract

In this paper, we improve the multi-dimensional THINC (tangent of hyperbola for interface capturing) scheme [F.
Xiao, Y. Honma, T. Kono, A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J.
Numer. Meth. Fluid. 48 (2005) 1023]. The THINC scheme is a VOF (volume of fluid) type method. In the original THINC
scheme, one-dimensional THINC scheme was straightforwardly used for multi-dimensional cases. In this paper, we pro-
pose the WLIC (weighed line interface calculation) method to extend the THINC scheme to multi-dimension. In the WLIC
method, the interface is reconstructed by taking an average of line interfaces along x, y and z coordinates with the weights
calculated from surface normal. The WLIC method can extend the THINC scheme to multi-dimension while maintaining
simplicity of implementation and achieve a higher accuracy than the original THINC scheme. The WLIC method can
readily extend the THINC scheme to three-dimension.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical computations of moving interfaces such as multi-phase flows have many practical and scientific
applications. Many numerical methods have been proposed for this kind of numerical simulations, for
instance, the front tracking methods [2,3], the level set methods [4–12], the VOF methods [13–36], and the
THINC scheme [1]. In the front tracking methods, Lagrangian interfaces are used to track the interface on
an Euler grid. The level set methods use the signed distance function to capture the interface. The interface
is represented by the zero-level set (zero-contour). The level set methods have advantages for the curvature
calculation and are useful to impose boundary conditions at the interface [37–40]. The level set methods have
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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such advanced features and relatively easy to implement compared to the front tracking method and the VOF
methods. Therefore, the level set methods have been used widely. However, the level set methods have a draw-
back that the level set methods cannot guarantee volume conservation. This causes disappearance of tiny
drops.

The VOF methods have been popular in multi-phase flow simulations, because they conserve volume. A
type of VOF methods using piecewise linear approximations is highly accurate and has no mass error. How-
ever, the methods may not be the most popular methods, because the implementation is difficult. Although the
implementation of two-dimensional VOF code is not so difficult, the implementation of three-dimensional
VOF code is significantly difficult. Therefore, many people cannot accomplish the implementation, even
though they want to use the methods. In this paper, we propose a simple VOF type method. The implemen-
tation of the proposed method is as simple as the level set implementation. Although the propose method is
not superior to the VOF methods, this method shows similar results with those by the VOF methods.

As an example, now we consider air–liquid two phase flow in two-dimensions. In VOF formulation, the
interface is represented by a following characteristic function v(x, y):
vðx; yÞ ¼
1 for the liquid at the point ðx; yÞ
0 for the air at the point ðx; yÞ:

�
ð1Þ
Here, I would like to note that v(x, y) is the value defined at a point (x, y) and is not a value on a calculation
grid. The value on the grid called volume fraction or color function is defined as the cell average of v(x, y),
Ci;j ¼
1

DxDy

Z Z
Xi;j

vðx; yÞdxdy; ð2Þ
where Xi,j = {(x,y)jxi�1/2,j 6 x 6 xi+1/2,j, yi,j�1/2 6 y 6 yi,j+1/2}. Although v has only the value 0 or 1, the vol-
ume fraction has the value 0 6 Ci,j 6 1. Fig. 1 is a schematic figure of the characteristic function v(x) and the
volume fraction Ci in one-dimension.

The characteristic function is developed by the advection equation:
ov
ot
þr � ðuvÞ � vr � u ¼ 0; ð3Þ
where u is the velocity. Ci,j is evolved by an approximation using a dimensional splitting algorithm as follows:
C�i;j ¼ Cn
i;j �

F n
x;iþ1=2;j � F n

x;i�1=2;j

Dx
þ Cn

i;j

ux;iþ1=2;j � ux;i�1=2;j

Dx
Dt; ð4Þ

Cnþ1
i;j ¼ C�i;j �

F �y;i;jþ1=2 � F �y;i;j�1=2

Dy
þ Cn

i;j

uy;i;jþ1=2 � uy;i;j�1=2

Dy
Dt; ð5Þ
with
F x;iþ1=2;j ¼ �
Z yi;jþ1=2

yi;j�1=2

Z xx;iþ1=2;j�uiþ1=2;jDt

xiþ1=2;j

vis;jðx; yÞdxdy; ð6Þ

F y;i;jþ1=2 ¼ �
Z yi;jþ1=2�uy;i;jþ1=2Dt

yi;jþ1=2

Z xiþ1=2;j

xi�1=2;j

vi;jsðx; yÞdxdy: ð7Þ
Here, Fx,i+1/2,j and Fy,i,j+1/2 are the advection fluxes for x direction and y direction, respectively. is and js are
Fig. 1. One-dimensional schematic figure of the characteristic function v(x) and the volume fraction Ci.



Fig. 2.
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is ¼
i if ux;iþ1=2;j P 0

iþ 1 if ux;iþ1=2;j < 0

�
ð8Þ
and
js ¼
j if uy;i;jþ1=2 P 0

jþ 1 if uy;i;jþ1=2 < 0;

�
ð9Þ
respectively. The order of sweep direction of (4) and (5) is alternated every time step to minimize the error by
dimensional splitting.

If vi,j is given as shown in Fig 2a, we can easily calculate Cnþ1
i;j . However, only the volume fraction Cn

i;j is

given in computation as shown in Fig 2b. The problem in the VOF method is attributed to reconstruction
of vi,j from the volume fraction Cn

i;j. The VOF methods contain several varieties. Two typical methods to
reconstruct vi,j are the SLIC (simple line interface calculation) method [13] and the PLIC (piecewise linear
interface calculation) method [15]. In the SLIC method (and also the VOF method by Hirt and Nichols
[14]), vi,j is reconstructed by a line along x or y coordinate as shown in Fig. 3a. An advantage of the SLIC
method is easy to implement. In the PLIC method, vi,j is calculated based on an diagonal line as shown in
Fig. 3b. Although the PLIC method is more accurate than the SLIC method, the implementation is compli-
cated especially for three-dimensional case.

The THINC scheme is almost same with the VOF methods except the characteristic function. Although the
VOF methods use the Heaviside step function as the characteristic function, the THINC scheme uses a
smoothed Heaviside function as shown in Fig. 4. In the THINC formulation, the surface is represented by
the smoothed function. An advantage of the THINC scheme is that it can prevent isolated small fluid (flotsam)
as discussed in the section of numerical results. By using a smoothed Heaviside function, the volume fraction
Ci,j becomes smoother than that of the VOF methods. The feature may be useful for the computation of the
normal vector of the interface. Although the THINC scheme can also use reconstruction methods like the
A schematic figure of two-dimensional volume fraction. The dark part (v(x, y) = 1) and the white part (v(x,y) = 0) represent the
s 1 and 0, respectively.

Fig. 3. Interface reconstruction by the SLIC method and the PLIC method.



Fig. 4. One-dimensional schematic figure of a THINC characteristic function v(x) (bold line). The dot line represents the characteristic
function of the VOF methods.
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PLIC method, in this paper we propose another approach to reconstruct the interface while retaining simplic-
ity of the implementation.

In Section 2, we describe the simple interface reconstruction algorithm, the WLIC method, the THINC/
WLIC method, which is a combination of the WLIC method and the THINC scheme, and the VOF/WLIC
method. The numerical experiments of pure advection by these methods and a fluid application (Rayleigh–
Taylor instability with surface tension) by the THINC/WLIC method are given in Section 3. The short sum-
mary comes in Section 4.

2. Numerical method

2.1. WLIC method

In the WLIC formulation, the interface is reconstructed like the SLIC method or the VOF method by Hirt
and Nichols. In order to maintain a simple implementation while taking into account the information of the
surface normal more effectively than the SLIC method, we use both the horizontal interface (interface along
x-coordinate) and the vertical interface (interface along y-coordinate) as shown in Fig. 5. These interfaces are
weighted by using the weights calculated from surface normal n,
vi;jðx; yÞ ¼ xx;i;jðni;jÞvx;i;jðx; yÞ þ xy;i;jðni;jÞvy;i;jðx; yÞ; ð10Þ
where xx and xy are the weights, and vx and vy are the characteristic functions of the vertical interface
and horizontal interface as shown in Fig. 5, respectively. The weights xx and xy, and the characteristic
functions vx and vy must satisfy
Fig. 5. Schematic figure of the WLIC algorithm.
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xx;i;j þ xy;i;j ¼ 1; ð11Þ

and
Ci;j ¼
1

DxDy

Z Z
Xi;j

vx;i;jðx; yÞdxdy ¼ 1

DxDy

Z Z
Xi;j

vy;i;jðx; yÞdxdy: ð12Þ
We chose simple weights
xx;i;j ¼
jnx;i;jj

jnx;i;jj þ jny;i;jj
; ð13Þ

xy;i;j ¼
jny;i;jj

jnx;i;jj þ jny;i;jj
: ð14Þ
Here, nx and ny are x component and y component of surface normal n. The surface normal for the interface is
simply calculated by using 3 · 3 grids:
nx;i;j ¼
1

4
ðnx;iþ1=2;jþ1=2 þ nx;i�1=2;jþ1=2 þ nx;iþ1=2;j�1=2 þ nx;i�1=2;j�1=2Þ; ð15Þ

ny;i;j ¼
1

4
ðny;iþ1=2;jþ1=2 þ ny;i�1=2;jþ1=2 þ ny;iþ1=2;j�1=2 þ ny;i�1=2;j�1=2Þ; ð16Þ
where
nx;i;j ¼
1

2Dx
ðCiþ1;j � Ci;j þ Ciþ1;jþ1 � Ci;jþ1Þ; ð17Þ

ny;i;j ¼
1

2Dx
ðCi;jþ1 � Ci;j þ Ciþ1;jþ1 � Ciþ1;jÞ: ð18Þ
The WLIC interface is represented as an average of the vertical interface and the horizontal interface as shown
in Fig. 5. The flux for the x direction is calculated as
F x;iþ1=2;j ¼ �
Z yi;jþ1=2

yi;j�1=2

Z xx;iþ1=2;j�uiþ1=2;jDt

xiþ1=2;j

vis;jðx; yÞdxdy; ð19Þ

¼ �
Z yi;jþ1=2

yi;j�1=2

Z xx;iþ1=2;j�uiþ1=2;jDt

xiþ1=2;j

ðxx;is;jvx;is;jðx; yÞ þ xy;is;jvy;is;jÞdxdy; ð20Þ

¼ �
Z yi;jþ1=2

yi;j�1=2

Z xx;iþ1=2;j�uiþ1=2;jDt

xiþ1=2;j

xx;is;jvis;jdxdy ð21Þ

�
Z yi;jþ1=2

yi;j�1=2

Z xx;iþ1=2;j�uiþ1=2;jDt

xiþ1=2;j

xy;is;jvis;jdxdy;

� F x;x;iþ1=2;jðxx;is;j; vx;is;jÞ þ F x;y;iþ1=2;jðxy;is;j; vy;is;jÞ; ð22Þ
where Fx,y is the flux for the x-direction, which is calculated from xy and vy. The calculation of flux depends
on the numerical methods. The details are explained in the following subsections.

2.2. THINC/WLIC method

The flux Fx,x is calculated based on a one-dimensional THINC scheme. As a characteristic function of the
THINC scheme, the piecewise modified hyperbolic tangent function1:
vx;i ¼
1

2
1þ ax tanh b

x� xi�1=2

Dx
� ~xi

� �� �� �
; ð23Þ
hough the maximum value of v is variable in the original THINC scheme [1], we fixed it to be equal to 1.
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is used. Here ax and b represent the interface direction and smoothing of the characteristic function, respec-
tively. ax is determined by
ax ¼
1 if nx;i P 0;

�1 if nx;i < 0:

�
ð24Þ
Here, we used nx,i = Ci+1 � Ci�1. Although we can use nx,i,j of (17), the result by nx,i = Ci+1,j � Ci�1,j seems
better than that by nx,i,j of (17). This nx,i is used only for the calculation of (24). The parameter b determines
the steepness of the smoothed Heaviside function. In this paper, we use b = 3.5 which corresponds one mesh
spacing smoothing. ~xiDx represents the distance between xi�1/2 and the interface, and indicates the position of
the interface as shown in Fig. 6a. ~xi is calculated from the cell average of vi as follows:
1

Dx

Z xiþ1=2

xi�1=2

viðx;~xiÞdx ¼ Cn
i : ð25Þ
The flux Fx,x,i+1/2,j is calculated as follows:
F x;x;iþ1=2;j ¼ �
Z xiþ1=2�uiþ1=2Dt

xiþ1=2

xx;isvx;isdx; ð26Þ
as shown in Fig. 6b. For more detail, see Appendix A. For Fx,y,i+1/2, the THINC scheme can be described
simply as
F x;y;iþ1=2;j ¼ xy;is;jCis;jux;iþ1=2;jDt; ð27Þ
because of the definition of Fx,y,i+1/2 (22). The flux Fx,i+1/2,j is calculated by summing (26) and (27).
We can generalize the formulation to two-dimensional case as follows:
F x;iþ1=2;j ¼ F x;x;iþ1=2 þ F x;y;iþ1=2; ð28Þ
F y;i;jþ1=2 ¼ F y;y;jþ1=2 þ F y;x;jþ1=2; ð29Þ
with
F n;n;mþ1=2 ¼ �
Z nmþ1=2�umþ1=2Dt

nmþ1=2

xn;msvn;msdn; ð30Þ

F n;g;mþ1=2 ¼ xg;msCmsun;mþ1=2Dt; ð31Þ

vn;ms ¼
1

2
1þ an tanh b

n� nms�1=2

Dn
� ~nms

� �� �� �
; ð32Þ

an ¼
1 if nn;ms P 0;

�1 if nn;ms < 0;

�
ð33Þ

ms ¼
m if un;mþ1=2 P 0;

mþ 1 if un;mþ1=2 < 0:

�
ð34Þ
Fig. 6. Schematic figure of the one-dimensional THINC scheme.
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The formulation can be easily extended to three-dimensions. Actually, we do not need to alter (30) and (31). A
set of fluxes is calculated as follows:
F x;iþ1=2;j;k ¼ F x;iþ1=2 ¼ F x;x;iþ1=2 þ F x;y;iþ1=2 þ F x;z;iþ1=2; ð35Þ
F y;i;jþ1=2;k ¼ F y;jþ1=2 ¼ F y;x;jþ1=2 þ F y;y;jþ1=2 þ F y;z;jþ1=2; ð36Þ
F z;i;j;kþ1=2 ¼ F z;kþ1=2 ¼ F z;x;kþ1=2 þ F z;y;kþ1=2 þ F z;z;kþ1=2: ð37Þ
Here, the three-dimensional weights xn are calculated as follows:
xn;m ¼
jnn;mj

jnx;mj þ jny;mj þ jnz;mj
: ð38Þ
Similarly, to two-dimensional case, the three-dimensional formulation can be simplified. We define the follow-
ing flux:
F n;v;mþ1=2 ¼ ð1� xn;msÞCmsun;mþ1=2Dt: ð39Þ
Here, Fn,v,m+1/2 is the flux calculated from the vertical surfaces for the flux direction, for instance
Fx,v = Fx,y + Fx,z (for 3D) and Fx,v = Fx,y (for 2D). Then we can rewrite (35)–(37) as follows:
F x;iþ1=2 ¼ F x;x;iþ1=2 þ F x;v;iþ1=2; ð40Þ
F y;jþ1=2 ¼ F y;y;jþ1=2 þ F y;v;jþ1=2; ð41Þ
F z;kþ1=2 ¼ F z;z;kþ1=2 þ F z;v;kþ1=2: ð42Þ
Then x and y components of two-dimensional flux (28) and (29) become the same with (40) and (41). Basically,
we can use same formula for 2D and 3D except for the weights (surface normal for the interface).

2.3. VOF/WLIC method

The WLIC algorithm can be applied to the VOF formulation as well. The flux of the VOF/WLIC method is
calculated like a donor–acceptor scheme [14]. The procedure of the VOF/WLIC method is similar with the
THINC/WLIC method. The difference is only the part (30) using the one-dimensional THINC scheme. Other
parts have the same formula.

We replace (30) by the donor–acceptor scheme. There are four kinds of flux for Fx,x,i+1/2,j as shown in
Fig. 7. The formula is
F n;n;mþ1=2 ¼

xn;ms minðun;mþ1=2Dt;CmsDnÞ if un;mþ1=2 P 0 and nn;ms > 0

xn;ms maxðun;mþ1=2Dt;�CmsDnÞ if un;mþ1=2 < 0 and nn;ms < 0

xn;ms maxð0; un;mþ1=2Dt � ð1� CmsÞDnÞ if un;mþ1=2 P 0 and nn;ms < 0

xn;ms minð0; un;mþ1=2Dt þ ð1� CmsÞDnÞ if un;mþ1=2 < 0 and nn;ms > 0:

8>>><
>>>:

ð43Þ
All the other parts are same with the THINC/WLIC method.
Fig. 7. The schematic figure of the donor–acceptor scheme of the VOF/WLIC method.
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3. Numerical results

In order to check the validity of the THINC/WLIC method and to compare the results obtained using the
THINC/WLIC with the results obtained using the VOF/WLIC method and the original THINC scheme,
these methods are applied to several test problems.

3.1. Advection test of square

These methods were tested by advecting a square step function because some VOF formulations can not
treat this test problem well. These results have no significant errors as shown in Figs. 8–10.

3.2. Solid body rotation

Zalesak’s test problem [41] in which a notched circle is rotated is widely used as a test of scalar advection
method. The velocity field is given by u = (y � 0.5, 0.5 � x) with Dt = 2p/628. One revolution is completed in
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Fig. 8. Advection test of square step function with velocity field (1, 0.75), CFL number 0.25 and 250 steps by the THINC/WLIC method
on 100 · 100 grid.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 9. Advection test of square step function with velocity field (1, 0.75), CFL number 0.25 and 250 steps by the VOF/WLIC method on
100 · 100 grid.
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Fig. 10. Advection test of square step function with velocity field (1, 0.75), CFL number 0.25 and 250steps by the original THINC method
on 100 · 100 grid.
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628 time steps. Figs. 11–13 represent the results by the THINC/WLIC method, the VOF/WLIC method and
the original THINC method, respectively.

Numerical convergence study is performed for Zalesak’s problem. Error is defined as
Error ¼
Ri;jjCn

i;j � Cex
i;jj

Ri;jC
ex
i;j

: ð44Þ
Here, Cex
i;j is the exact solution of Cn

i;j. Table 1 shows the result of the convergence study. Although the
THINC/WLIC method and the VOF/WLIC method use the same formulation except for different character-
istic functions (smoothed Heaviside function for the THINC method and Heaviside step function for the VOF
method), the THINC/WLIC method is superior to the VOF/WLIC method. The THINC/WLIC method and
the VOF/WLIC method have first-order accuracy.
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Fig. 11. Zalesak’s test problem after one revolution by the THINC/WLIC method on 100 · 100 grid.
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Fig. 13. Zalesak’s test problem after one revolution by the original THINC method on 100 · 100 grid.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 12. Zalesak’s test problem after one revolution by the VOF/WLIC method on 100 · 100 grid.

Table 1
Errors and convergence rates for Zalesak test problem

Grid spacing 1/50 Rate 1/100 Rate 1/200

THINC/WLIC 1.22 · 10�1 1.27 5.05 · 10�2 1.04 2.46 · 10�2

VOF/WLIC 1.29 · 10�1 1.26 5.40 · 10�2 0.75 2.38 · 10�2

Original THINC 1.32 · 10�1 0.60 8.73 · 10�2 0.60 4.79 · 10�2
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3.3. Shearing flow

We apply these methods to a reversed single vertex problem with highly deformed velocity field [17]. The
velocity field is defined as
u ¼ ðsinðxÞ cosðyÞ;� cosðxÞ sinðyÞÞ: ð45Þ

The computational domain [0, p] · [0, p] is equally divided into a 100 · 100 mesh. The initial volume fraction
distribution is a circle centered at (p/2, (p + 1)/5) with a radius of p/5. The initial volume fraction is developed
with the velocity field (45) for N steps (the CFL number of 0.25) and then transported back with a reversed
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velocity field for another N steps. As expected, the flow field leads to the stretching and spiraling of the initial
circle, which is then characterized by a thin film tail that becomes unresolvable by the finite resolution of the
fixed mesh when N is large. To compare with the results in [17], we plotted the results for N = 1000 and
N = 2000 in Fig. 14 (THINC/WLIC, N = 1000), Fig. 15 (THINC/WLIC, N = 2000), Fig. 16 (VOF/WLIC,
N = 1000), Fig. 17 (VOF/WLIC, N = 2000), Fig. 18 (original THINC, N = 1000) and Fig. 19 (original
THINC, N = 2000). Although the VOF/WLIC method produces isolated small fluid bodies (flotsam) which
appear in the VOF/SLIC method [16,17,31] as shown in Figs. 16 and 17, the THINC/WLIC method does
not generate flotsam as shown in Figs. 14 and 15. Reconstruction using a smoothed Heaviside function of
the THINC scheme plays an important role in preventing flotsam. To validate it, we apply the THINC/WLIC
method using a steeper smoothed Heaviside function (b = 10, almost three times steeper than that of b = 3.5)
to the same test problem of N = 2000. Then the THINC/WLIC method also generates flotsam as represented
in Fig. 20.

Table 2 shows the result of the numerical convergence study. Table 3 represents the errors for different step
numbers N. Table 3 shows that the errors by the THINC/WLIC method approach to those by the VOF/PLIC
method as deformation becomes larger.
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Fig. 14. Single-vortex shearing flow test by THINC/WLIC on 100 · 100 grid. The left and right figures represent the result after 1000 steps
and after 1000 steps forward followed by 1000 steps backward, respectively. The contour levels of 0.05, 0.5 and 0.95 are displayed.
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Fig. 15. Single-vortex shearing flow test by THINC/WLIC on 100 · 100 grid. The left and right figures represent the result after 2000 steps
and after 2000 steps forward followed by 2000 steps backward, respectively. The contour levels of 0.05, 0.5 and 0.95 are displayed.
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Fig. 16. Single-vortex shearing flow test by VOF/WLIC (N = 1000).
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Fig. 17. Single-vortex shearing flow test by VOF/WLIC (N = 2000).
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Fig. 18. Single-vortex shearing flow test by the original THINC (N = 1000).
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Fig. 19. Single-vortex shearing flow test by the original THINC (N = 2000).
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Fig. 20. Single-vortex shearing flow test by the VOF/WLIC method using b = 10 (N = 2000).

Table 2
L1 errors and convergence rates of shearing flow test with N = 2000

Grid spacing p/50 Rate p/100 Rate p/200

THINC/WLIC 1.30 · 10�1 1.62 4.02 · 10�2 2.01 1.00 · 10�2

VOF/WLIC 1.62 · 10�1 1.36 6.31 · 10�2 1.65 2.01 · 10�2

Original THINC 1.57 · 10�1 1.24 6.64 · 10�2 0.39 5.06 · 10�2

Table 3
Errors of shearing flow test with results by other methods for different step number N

Method Error (N = 250) Error (N = 500) Error (N = 1000) Error (N = 2000)

THINC/WLIC 1.11 · 10�2 1.21 · 10�2 1.62 · 10�2 4.02 · 10�2

VOF/WLIC 1.43 · 10�2 2.05 · 10�2 3.28 · 10�2 6.31 · 10�2

Original THINC 2.46 · 10�2 3.13 · 10�2 3.19 · 10�2 6.64 · 10�2

PLIC [17] 2.61 · 10�3 5.12 · 10�3 8.60 · 10�3 3.85 · 10�2
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To compare the orders of accuracy as well as errors of proposed methods with those of a PLIC method [18],
THINC/WLIC and VOF/WLIC are applied to another single vertex problem by Rider-Kothe [18,42,43]. The
initial volume fraction distribution is a circle centered at (0.5, 0.75) with a radius of 0.15 on the computational
domain [0, 1] · [0, 1]. The velocity filed is given by the stream function [18,42,43]:



Table
Errors

Grid s

THIN
VOF/W
PLIC

1998 K. Yokoi / Journal of Computational Physics 226 (2007) 1985–2002
W ¼ 1

p
sin2ðpxÞ cos2ðpyÞ cos

pt
T

� �
: ð46Þ
The initial volume fraction is deformed by the velocity field and it returns to its initial state at t = T. A CFL
number of one is used. In this test problem, the error is estimated by
Error ¼ Ri;jjCn
i;j � Cex

i;jjDxDy ð47Þ
Table 4 shows the result of the numerical convergence study of T = 8 with the result by Rider–Kothe [18].
Table 4 exhibits that errors generated by the THINC/WLIC method approach those generated by the
VOF/PLIC method for coarser grids.

We compare CPU time of the proposed methods with that of the original VOF by Hirt and Nichols. Com-
pared to the original VOF method, the CPU time of the THINC/WLIC method and the VOF/WLIC method
is double and almost same, respectively.

3.4. Fluid simulation

The THINC/WLIC is validated in a fluid simulation with surface tension force. We use following governing
equations for incompressible fluid,
Z

C
u � ndS ¼ 0; ð48Þ

o

ot

Z
X

u dV þ
Z

C
uðu � nÞdS ¼ � 1

q

Z
C

pndS þ 1

q

Z
C

s � ndS þ Fsf þ Fbf ð49Þ
where u is the velocity, n the outgoing normal vector for the control volume X with its surface denoted by C, q
the density, p the pressure, s the viscous stress tensor, Fsf the surface tension force and Fbf the body force.
These equations are solved by the CIP-CSL(constrained interpolation profile conservative semi-Lagrangian)
method [44–46] of a conservation equation solver and VSIAM3 (volume/surface integrated average based
multi-moment method) [47,48] of a fluid solver. The CSF (continuum surface force) model [50] is used for
the surface tension computation. For the curvature calculation, the level set function (a signed distance func-
tion) is created from 0.5 contour of the VOF function by a CLSVOF (coupled level set and volume-of-fluid)
framework [9,10]. The detail of the fluid algorithm will be reported in [54].

The Rayleigh–Taylor instability with surface tension force is computed [49–51]. When a heavy fluid is sup-
ported against gravity by a light fluid, a Rayleigh–Taylor instability develops in which perturbations of the
interface grow exponentially in time as exp(nt) for small amplitudes. The growth rate n is given by [52,53]
n2 ¼ Kg A� K2r
gðql � qhÞ

� �
; ð50Þ
where K is the wave number of the perturbation, g the gravity acceleration, A = (qh � ql)/(ql + qh), and ql and
qh are the densities of the light fluid and heavy fluid, respectively. Following Daly [49], a stability parameter U
can be defined:
U ¼ r
rc

¼ rK3

ðqh � qlÞg
ð51Þ
where rc is a critical value of the surface tension coefficient for n = 0. For rc < 1, the interface with a pertur-
bation leads to instability.
4
and convergence rates of shearing flow test of Rider–Kothe (T = 8)

pacing 1/32 Rate 1/64 Rate 1/128 Rate 1/256

C/WLIC 4.88 · 10�2 1.75 1.45 · 10�2 2.40 2.75 · 10�3 1.94 7.24 · 10�4

LIC 5.81 · 10�2 1.79 1.68 · 10�2 2.53 2.90 · 10�3 1.39 1.11 · 10�3

[18] 4.78 · 10�2 2.78 6.96 · 10�3 2.27 1.44 · 10�3 – –
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Fig. 21. Snapshots of the Rayleigh–Taylor instability at t = 13 for several values of U. A 40 · 120 grid was used.
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Fig. 22. Theoretical Rayleigh–Taylor instability growth rate (line) and computed growth rates (dot) are plotted as a function of the
stability parameter U.
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Fig. 21 shows snapshots of the Rayleigh–Taylor instability at t = 13 for several values of U. As a set of
parameters, ql = 0.25, qh = 1.0, K = 1, g = 1 and l = 0 are used, where l is the viscosity coefficient. The
domain width and height are 2p and 6p, respectively. The instability is initiated with a perturbation dvcos(Kx)
(dv = 5 · 10�3 is used in this paper) given to the vertical velocity component at the interface. A 40 · 120 grid
was used. The boundary condition on top and bottom boundaries is Neumann. For side boundaries, the peri-
odic boundary condition is used. The growth rates of numerical simulations are compared with the analytical
solution in Fig. 22.

4. Summary

We proposed a simple and practical VOF type method based on the THINC scheme. A simple interface
reconstruction algorithm (WLIC) was proposed and combined with the THINC scheme. Although the
THINC/WLIC method is a kind of stair-stepped method like the VOF method by Hirt and Nichols [14],
the numerical results obtained using the THINC/WLIC method might appear to be similar to those obtained
using the VOF/PLIC method. The results by the THINC/WLIC method approach those by the VOF/PLIC
method for larger deformations and coarser grids. However the THINC/WLIC method is not superior to the
VOF/PLIC method. The implementation of the THINC/WLIC method is simpler than that of the VOF/PLIC
method. The THINC/WLIC method can be naturally extended to three-dimensions. An appropriate interface
smoothness plays an important role in preventing flotsam. The numerical results of the Rayleigh–Taylor insta-
bility with surface tension force show good agreement with the theoretical solution.
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Appendix A. One-dimensional THINC

~xi and Fx,x,i+1/2 are calculated as follows:
Ci ¼
1

Dx

Z xiþ1=2

xi�1=2

1

2
1þ a tanh b

x� xi�1=2

Dx
� ~xi

� �� �� �
dx; ðA:1Þ

Ci ¼
1

2Dx
xþ aDx

b
ln cosh b

x� xi�1=2

Dx

� �
� ~xi

� �� �� �xiþ1=2

xi�1=2

; ðA:2Þ

Ci ¼
1

2
1þ a

b
ln

coshðbð1� ~xiÞÞ
coshðb~xiÞ

� �� �
; ðA:3Þ

Ci ¼
1

2
1þ a

b
ln a1

� �
: ðA:4Þ
Here,
a1 �
coshðbð1� ~xiÞÞ

coshðb~xiÞ
¼ exp

b
a
ð2Ci � 1Þ

� �
; ðA:5Þ

a1 ¼
expðbð1� ~xiÞÞ þ expð�bð1� ~xiÞÞ

expðb~xiÞ þ expð�b~xiÞ
¼ a2

3 þ a2
2

a3ða2
2 þ 1Þ : ðA:6Þ
Here,
a2 � expðb~xiÞ; ðA:7Þ
a3 � expðbÞ; ðA:8Þ

a2
2 ¼

a2
3 � a1a3

a1a3 � 1
; ðA:9Þ
then
~xi ¼
1

2b
ln

a2
3 � a1a3

a1a3 � 1

� �
: ðA:10Þ
The flux is calculated as follows:
F x;x;iþ1=2 ¼ �
Z xiþ1=2�uiþ1=2Dt

xiþ1=2

xx;is

2
1þ a tanh b

x� xis�1=2

Dx
� ~xis

� �� �� �
dx; ðA:11Þ

¼ �xx;is

2
xþ aDx

b
ln cosh b

x� xis�1=2

Dx

� �
� ~xis

� �� �� �xiþ1=2�uiþ1=2Dt

xiþ1=2

: ðA:12Þ
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